⎡ 0 0 1 1 0 0 0 1 0 ⎦ ⎤ ⎣ ⎡ x 1 x 2 x 3 ⎦ ⎤ = ⎣ ⎡ x 3 x 1 x 2 ⎦ ⎤ The
1 1 1 in the first row is in the
2 n d 2^{nd} 2 n d column so the
2 n d 2^{nd} 2 n d the row of the other matrix will be placed in the first row and so on ..
[ 0 1 0 0 0 1 1 0 0 ] [ a a a b b b c c c ] = [ b b b c c c a a a ] \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & a & a \\ b & b & b \\ c & c & c \\ \end{bmatrix} = \begin{bmatrix} b & b & b \\ c & c & c \\ a & a & a \\ \end{bmatrix} ⎣ ⎡ 0 0 1 1 0 0 0 1 0 ⎦ ⎤ ⎣ ⎡ a b c a b c a b c ⎦ ⎤ = ⎣ ⎡ b c a b c a b c a ⎦ ⎤ Let's See some julia
Code
A = [[0 , 1 , 0 ] [0 , 0 , 1 ] [1 , 0 , 0 ]]
B = [[1 , 2 , 3 ] [4 , 5 , 6 ] [7 , 8 , 9 ]]
@show A * B
3 ×3 Matrix {Int64 }:
3 6 9
1 4 7
2 5 8
Right multiplication by a permutation matrix rearranges the corresponding columns
[ a b c a b c a b c ] [ 0 1 0 0 0 1 1 0 0 ] [ c a b c a b c a b ] \begin{bmatrix} a & b & c \\ a & b & c \\ a & b & c \\ \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} c & a & b \\ c & a & b \\ c & a & b \\ \end{bmatrix} ⎣ ⎡ a a a b b b c c c ⎦ ⎤ ⎣ ⎡ 0 0 1 1 0 0 0 1 0 ⎦ ⎤ ⎣ ⎡ c c c a a a b b b ⎦ ⎤ Let's test with julia
A = [[0 , 1 , 0 ] [0 , 0 , 1 ] [1 , 0 , 0 ]]
B = [[1 , 2 , 3 ] [4 , 5 , 6 ] [7 , 8 , 9 ]]
@show B * A
3 ×3 Matrix {Int64 }:
4 7 1
5 8 2
6 9 3
We can also combine both as follows
[ 0 1 0 0 0 1 1 0 0 ] [ a b c d f e g h i ] [ 0 1 0 0 0 1 1 0 0 ] = [ f d e i g h c a b ] \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & f & e \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} f & d & e \\ i & g & h \\ c & a & b \end{bmatrix} ⎣ ⎡ 0 0 1 1 0 0 0 1 0 ⎦ ⎤ ⎣ ⎡ a d g b f h c e i ⎦ ⎤ ⎣ ⎡ 0 0 1 1 0 0 0 1 0 ⎦ ⎤ = ⎣ ⎡ f i c d g a e h b ⎦ ⎤ I found This matrix very interesting! It’s also an orthogonal
matrix , which means it’s equal to its transpose. What about you? Do also you find it interesting?